Q1. **Name the embryological processes (prominences) that are responsible for the development of the face. Specify the processes that fail to fuse in cleft lip and cleft palate.** (3)

Topic: Oral Embryology

Key:

<table>
<thead>
<tr>
<th>Processes</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face:</td>
<td></td>
</tr>
<tr>
<td>Frontonasal (medial and lateral nasal)</td>
<td>(1)</td>
</tr>
<tr>
<td>Right and left Maxillary</td>
<td></td>
</tr>
<tr>
<td>Right and left Mandibular</td>
<td></td>
</tr>
<tr>
<td>Cleft lip:</td>
<td></td>
</tr>
<tr>
<td>Medial nasal and maxillary</td>
<td>(1)</td>
</tr>
<tr>
<td>Cleft of primary palate:</td>
<td></td>
</tr>
<tr>
<td>Frontonasal (medical nasal) and maxillary</td>
<td>(0.5)</td>
</tr>
<tr>
<td>(palatal shelf)</td>
<td></td>
</tr>
<tr>
<td>Secondary palate:</td>
<td></td>
</tr>
<tr>
<td>Palatal shelves of left and right maxillary</td>
<td>(0.5)</td>
</tr>
<tr>
<td>processes</td>
<td></td>
</tr>
</tbody>
</table>

Ref:
Chapter 3: Pages 30-53
Q2. Draw and label the two different histological structures of ameloblasts at the stage of enamel maturation. (3)

Topic: Oral Histology

Key:
Ref:
Chapter 7: Page 174
Q3. Indicate the origin and fate of the following cells: (3)
(a) Odontoblasts
(b) Cementoblasts
(c) Ameloblasts
(d) Periodontal ligament fibroblasts
(e) Serous cells of salivary glands
(f) Cells of the stratum spinosum of oral epithelium

Topic: Oral Histology

Key:

<table>
<thead>
<tr>
<th>Cell</th>
<th>Origin</th>
<th>Fate</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odontoblasts</td>
<td>Dental papilla, ectomesenchyme, neural crest</td>
<td>Pulp periphery</td>
<td>0.5</td>
</tr>
<tr>
<td>Cementoblasts</td>
<td>Dental follicle, ectomesenchyme</td>
<td>Cementocytes or in PDL on the cementum surface</td>
<td>0.5</td>
</tr>
<tr>
<td>Ameloblasts</td>
<td>Internal enamel epithelium, Dental organ, Ectoderm</td>
<td>Reduced enamel epithelium, junctional epithelium</td>
<td>0.5</td>
</tr>
<tr>
<td>PDL fibroblasts</td>
<td>Dental follicle, ectomesenchyme</td>
<td>In PDL, may undergo cell death</td>
<td>0.5</td>
</tr>
<tr>
<td>Serous cells</td>
<td>Oral epithelium, ectoderm</td>
<td>In gland, may undergo cell death</td>
<td>0.5</td>
</tr>
<tr>
<td>Cells of st. spinosum</td>
<td>Basal cell layer, ectoderm</td>
<td>Lost in oral cavity</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Ref:
Chapters 5, 7, 8, 9, 11 and 12
Q4. Explain what you understand by (define) the following terms related to oral mucosa: (3)
(a) Lamina propria
(b) Masticatory mucosa
(c) Attached gingiva
(d) Vermillion zone
(e) Junctional epithelium
(f) Melanocyte

Topic: Oral Histology

Key:

(0.5 marks for each)

(a) Lamina propria: connective tissue underlying epithelium- further subdivided into papillary and reticular lamina propria.

(b) Masticatory mucosa: moist lining of the oral cavity capable of withstanding masticatory stresses. Has keratinized epithelium. Covers gingive and hard palate.

(c) Attached gingiva: part of masticatory mucosa firmly adherent to the underlying bone, present between free gingiva and alveolar mucosa.

(d) Vermillion zone: transitional zone of mucosa present on the lips, between skin of the lips and oral labial mucosa. Redder than oral mucosa, lightly keratinized.

(e) Junctional epithelium: connects the tooth to the gingiva by a basal lamina (hemi-desmosomes)- thus forming the dento-gingival junction. Develops initially by cells of the reduced enamel epithelium.

(f) Melanocyte: melanin pigment producing cell present in the deeper layer of epithelium. Distributes/injects melanosomes into adjacent cells.

Ref:
Chapter 12: Pages 329-375
Q5. Enumerate 6 functions of saliva. Name the components of saliva that are responsible for each of these functions. (3)

Topic: Oral Physiology

Key:

<table>
<thead>
<tr>
<th>Function</th>
<th>Components</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection/lubrication</td>
<td>Mucins, glycoproteins, water</td>
<td>0.5</td>
</tr>
<tr>
<td>Digestion</td>
<td>Amylase, lipase</td>
<td>0.5</td>
</tr>
<tr>
<td>Tooth integrity</td>
<td>Calcium, phosphate, fluoride</td>
<td>0.5</td>
</tr>
<tr>
<td>Taste</td>
<td>Gustin, water</td>
<td>0.5</td>
</tr>
<tr>
<td>Buffering</td>
<td>Bicarbonate, phosphate</td>
<td>0.5</td>
</tr>
<tr>
<td>Antibacterial</td>
<td>Lactoferrin, lysozyme, Immunoglobulins, peroxidase, histatins, agglutinins</td>
<td>0.5</td>
</tr>
<tr>
<td>Tissue healing</td>
<td>Peptides, proteins</td>
<td></td>
</tr>
<tr>
<td>Pellicle formation</td>
<td>Proteins</td>
<td></td>
</tr>
</tbody>
</table>

Ref:
Chapter 11: Pages 300-301
Q6. Explain the changes/events that occur inside the temporomandibular joint during:
(a) Wide opening of the mouth.
(b) Right lateral movement of the mandible.

Key:

(a) Initial bilateral hinge movement of the condyle in the lower joint compartment. Followed by bilateral forward gliding movement of the condyle and disk in the upper compartment.

(b) Rotational movement of the RIGHT condyle along a vertical axis in the lower joint compartment. Forward gliding movement of the LEFT condyle in the upper compartment.

Ref:
Chapter 13: Page 376-398
Q7. List the age changes in the following dental tissues:

(a) Enamel.
(b) Dentin.
(c) Pulp.

Topic: Oral Histology

Key:

(a)
Attrition, wear facets
Discolouration
Reduced permeability, decreased caries
Increased brittleness

(b)
Secondary dentin formation
Intratubular dentin deposition – sclerotic dentin formation
Increased brittleness
Decreased permeability
Dead tract formation

(c)
Decrease in volume of pulp chamber and root canal
Reduced vascular supply
Decrease in cell density
Degeneration of nerves
Dystrophic calcification

Ref:
Chapters 7 and 8
Q8. Tabulate the origin of fibres, location and function of acellular (primary) and cellular (secondary) cementum. (3)

Topic: Oral Histology

Key:

<table>
<thead>
<tr>
<th>Type</th>
<th>Origin of fibres</th>
<th>Location</th>
<th>Function</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acellular</td>
<td>Mostly extrinsic</td>
<td>Cervical margin to apical third</td>
<td>Anchorage</td>
<td>0.5+0.5+0.5</td>
</tr>
<tr>
<td>Cellular</td>
<td>Intrinsic</td>
<td>Middle to apical third and furcations</td>
<td>Adaptation and repair</td>
<td>0.5+0.5+0.5</td>
</tr>
</tbody>
</table>

Ref:
Chapter 9: Page 248
Q9. Draw and label the lingual view of the maxillary right permanent central incisor. (3)

Topic: Tooth Morphology

Key:

Lingual view of Maxillary Right Permanent Central Incisor
(0.5 marks for each feature labeled above)

Ref:
Tooth Morphology. Fuller.
Q10. Indicate how each of the following teeth are referred to in the Palmer notation, Universal numbering system and the FDI notation:

(a) Maxillary right permanent lateral incisor. (0.5)
(b) Maxillary left permanent second molar. (0.5)
(c) Maxillary right deciduous first molar. (0.5)
(d) Mandibular left first premolar. (0.5)
(e) Mandibular right permanent canine. (0.5)
(f) Mandibular left deciduous second molar. (0.5)

Topic: Tooth Morphology

Key:

<table>
<thead>
<tr>
<th>Tooth</th>
<th>Palmer</th>
<th>Universal</th>
<th>FDI</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxillary right permanent lateral incisor</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>0.5</td>
</tr>
<tr>
<td>Maxillary left permanent second molar</td>
<td>7</td>
<td>15</td>
<td>27</td>
<td>0.5</td>
</tr>
<tr>
<td>Maxillary right deciduous first molar</td>
<td>D</td>
<td>B</td>
<td>54</td>
<td>0.5</td>
</tr>
<tr>
<td>Mandibular left first premolar</td>
<td>4</td>
<td>21</td>
<td>34</td>
<td>0.5</td>
</tr>
<tr>
<td>Mandibular right permanent canine</td>
<td>3</td>
<td>27</td>
<td>43</td>
<td>0.5</td>
</tr>
<tr>
<td>Mandibular left deciduous second molar</td>
<td>E</td>
<td>K</td>
<td>75</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Ref:
Tooth Morphology. Fuller.
Q11. During cavity preparation a patient feels pain during drilling and irrigation of the cavity. Explain the mechanisms that may be responsible for this sensitivity. Which of these is the most likely explanation? (3)

Topic: Oral Physiology

Key:

1. Dentin contains nerve endings that respond when it is stimulated. (1 mark)

2. Odontoblasts serve as receptors and are coupled to nerves in the pulp. (1 mark)

3. Fluid movement in dentinal tubules due to stimulation is registered by nerves close to the dentin. Most likely mechanism. (1 mark)

Ref:
Chapter 8: Pages 233-236
Q12. Explain the reasons why a tooth continues to move throughout its life after eruption. (3)

Topic: Oral Anatomy

Key:

1. Accommodation for jaw/bone growth- teeth move 2-3 mm occlusally between ages 14-18. (1 mark)

2. Compensation for occlusal wear/attrition. Teeth move occlusally resulting in cementum deposition. (1 mark)

3. Accommodation for interproximal wear. Mesial drift due to anterior component of occlusal force and contraction of transseptal ligament. (1 mark)

Ref:
Chapter 10: Pages 280-282
Q13. Draw and label the histological structure of the pulp, clearly indicating the different zones of the pulp. (3)

Topic: Oral Histology

Key:

![Histological structure of pulp](image)

- Primary dentin (0.25)
- Cell-free zone (of Weil) (0.5)
- Cell-rich zone (0.5)
- Odontoblast layer (0.5)
- Secondary dentin
- Vessel (0.25)
- Pulp Core (0.5)
- Nerve (0.25)
- Predentin (0.25)

Ref:
Chapter 8: Page 216
Q14. Tabulate the time of eruption, Number of cusps, names of the roots, and names of the root canals of the following teeth:

a) Maxillary permanent first molar. (1)
b) Mandibular permanent first molar. (1)
c) Maxillary first premolar. (1)

Topic: Tooth Morphology

Key:

<table>
<thead>
<tr>
<th>Tooth</th>
<th>Time of eruption</th>
<th>Number of cusps</th>
<th>Name of roots</th>
<th>Name of root canals</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxillary permanent first molar</td>
<td>6-7</td>
<td>4-5</td>
<td>Palatal, mesiobuccal. distobuccal</td>
<td>Palatal, mesiobuccal. distobuccal</td>
<td>0.25+0.25+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.25+0.25</td>
</tr>
<tr>
<td>Mandibular permanent first molar</td>
<td>6-7</td>
<td>5</td>
<td>Mesial, distal</td>
<td>Mesiobuccal, mesiolingual, distal (may be 2 distal canals)</td>
<td>0.25+0.25+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.25+0.25</td>
</tr>
<tr>
<td>Maxillary first premolar</td>
<td>9-11</td>
<td>2</td>
<td>Variable. One or bifid (buccal, lingual)</td>
<td>Variable. Buccal, lingual</td>
<td>0.25+0.25+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.25+0.25</td>
</tr>
</tbody>
</table>

Ref:
Chapter 10: Pages 275-298
& Tooth Morphology. Fuller.
Q15. There is accidental exposure of the pulp during cavity preparation. The dentist covers the exposed pulp using a calcium hydroxide cement. Explain the response of the pulp to this injury. (3)

Topic: Oral Histology

Key:

Initial response by tissue macrophages and neutrophils (1 mark)
Inflammatory response initiated by lymphocytes and mast cells. Pulp may undergo necrosis (1 mark)
Undifferentiated cells will turn into odontoblasts and produce reparative (tertiary) dentin calcific bridge. (1 mark)

Ref:
Chapter 8: Pages 192-239