
COURSE OF STUDIES

for

Master of Philosophy

in

Oral Biology

UNIVERSITY OF HEALTH SCIENCES, LAHORE PAKISTAN

Program Rationale:

To produce knowledgeable and skillful human resource in Oral Biology demonstrating attributes of a good teacher, researcher, assessor, professional and a leader.

Mission Statement:

To produce knowledgeable and skillful human resource in Oral Biology demonstrating attributes of a good teacher, researcher, assessor, professional and a leader.

Program Educational Objectives:

Trainees will require the satisfactory completion of a structured training program in Oral Biology whose program objectives are as follows:

1. Provide strong theoretical and practical base to the learners
2. Enhance learner's critical thinking and analytical skills that will help them become confident researchers and knowledgeable in the field of Oral Biology
3. Enhance learners to transfer their expertise to the future human resources in this field with latest trends as teachers, researchers and supervisors
4. Enable learners to demonstrate attributes of professionalism and leadership at their respective workplaces

Program Learning Outcomes:

By end of the degree program, the students will be able to

1. Demonstrate adequate knowledge of developmental, structural, histological and functional aspects of the biology of craniofacial region relevant to Oral Biology including its sub specializations
 - a. Demonstrate technical, organizational and analytical skills as a researcher
 - b. Develop effective scientific writing skills

- c. Develop effective teaching and communication skills through class and scientific presentations
- d. Become a lifelong learner and a thorough professional

SCHEME OF STUDIES (2-Years)

MS/MPhil: Oral Biology

Semester #	Course code	Course title	Credit hours/week		
			Theory	Practical	Total
1	RM701	Biostatistics and Research Methodology	2	0	2
	OB701	Craniofacial Developmental Biology & Molecular Signaling	0.5	0.5	8
	OB702	Structure, Development and Histology of Dental Hard Tissues	02	01	
	OB703	Structure, Development and Histology of Dental Soft and Supporting Tissues	02	01	
	OB704	Mechanism of Growth, Eruption & Shedding in the Oral Cavity	0.5	0.5	
	GA104	Elective Course General Anatomy	2	0	2
2	OB705	Oral Physiology & Dental Biochemistry	01	00	8
	OB706	Tooth Morphology & Occlusion	02	01	
	OB707	Oral Mucosa & Salivary Glands	01	01	
	OB708	Temporomandibular joint & Growth and development of facial profiles	0.5	0.5	
	OB709	Repair and regeneration of tooth and supporting tissues	0.5	0.5	
		Elective Course	2	0	2
3	Research (thesis)		6		6

4	Professional & Teaching Skills Apprenticeship (PTSA) <ul style="list-style-type: none"> • Teaching skills • Professional communication skills • Scientific writing skills • Research funding/grants skills • Skills related to Ethical code of conduct 	0	2
(Total: 30)			

Course Title: OB701 Craniofacial Developmental Biology & Molecular Signaling

Contact Hours:

Theory = 08-hour

Practical = 24

Total = 32-hour

Credit Hours:

Theory = 0.5

Practical = 0.5

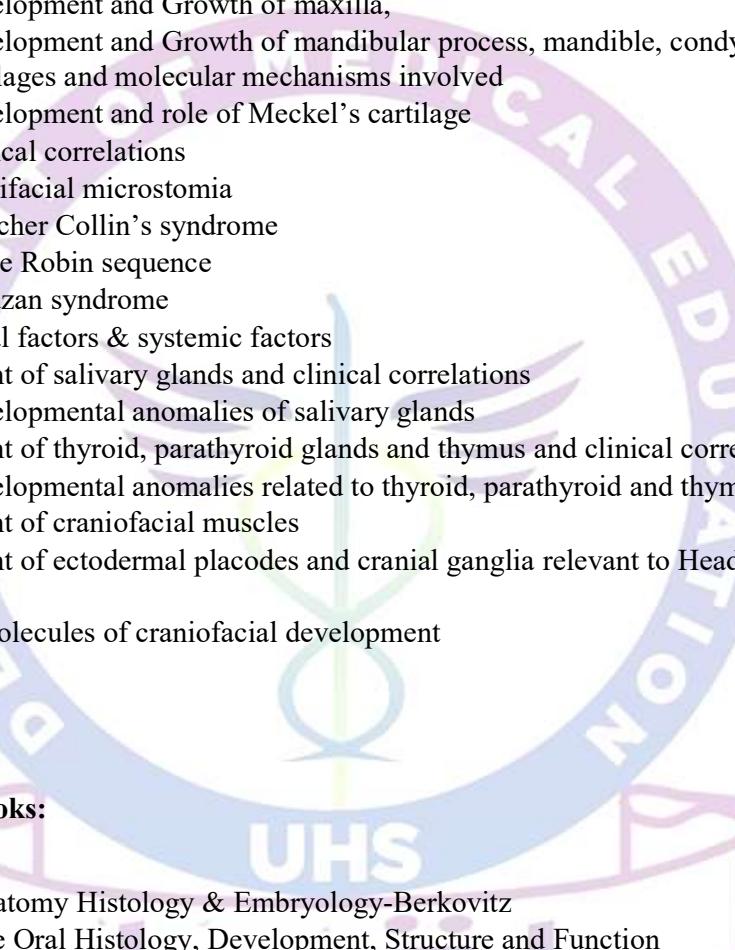
Total = 01

Course Objective:

- The developmental processes of the organs of craniofacial complex
- Molecular mechanism of each developmental process

Learning Outcome:

It will help out the students to learn that how the development of tooth initiates during prenatal development


Course Outline:

- a) Neural crest cells and molecular regulation of neural crest cell induction, specification, migration and differentiation. Their role in craniofacial development
- b) Pharyngeal arches, pouches, clefts, membrane and their derivatives
- c) Development of cranial vault and base
- d) Development of face
 - i. Formation of facial prominences
 - ii. Molecular regulation by Hox genes
 - iii. Face and fronto-ectodermal zone

Clinical correlations of face:

- i. Holoprosencephaly
- ii. First arch syndromes/ sequences (Pierre Robin, Treacher Collin's)
- iii. Crouzon, Apert's and Pfeiffer's syndrome
- iv. Microstomia

- e) Development of Palate
 - I. Development of primary palate
 - II. Development of secondary palate, palatal shelf elevation and fusion and molecular mechanism of its development
 - III. Clinical consideration
 - i. Cleft lip and palate
 - ii. Submucous clefts
 - iii. Common syndromes associated with cleft lip and palate

- iv. Non neoplastic cysts
- v. Hypernasality
- f) Development of tongue and clinical correlation
 - i. Developmental anomalies of tongue
- a) Development of skull (neurocranium, viscerocranium)
- b) Development of cranial sutures, newborn skull and clinical consideration
 - i. Briefly Craniosynostosis
- g) Development and Growth of jaw bones
 - I. Development and Growth of maxilla,
 - II. Development and Growth of mandibular process, mandible, condylar cartilages and molecular mechanisms involved
 - III. Development and role of Meckel's cartilage
 - IV. Clinical correlations
 - i. Hemifacial microstomia
 - ii. Treacher Collin's syndrome
 - iii. Pierre Robin sequence
 - iv. Crouzan syndrome
 - v. Local factors & systemic factors
- h) Development of salivary glands and clinical correlations
 - i. Developmental anomalies of salivary glands
- i) Development of thyroid, parathyroid glands and thymus and clinical correlations
 - i. Developmental anomalies related to thyroid, parathyroid and thymus gland
- j) Development of craniofacial muscles
- k) Development of ectodermal placodes and cranial ganglia relevant to Head and neck region
- l) Signaling molecules of craniofacial development

Practicals: N/A

Recommended Books:

- i. Oral Anatomy Histology & Embryology-Berkovitz
- ii. Ten Cate Oral Histology, Development, Structure and Function
- iii. Essentials of Oral Histology and Embryology-Cheigo
- iv. Illustrated Dental Embryology, Histology and Anatomy-Bath Balogh & Fehrenbach
- v. Anatomy for Dental Students
- vi. Mineralized Tissues in Oral and Craniofacial
- vii. Dental Biochemistry
- viii. Basic sciences for dental students

Course Title: OB702 Structure, Development and Histology of Dental Hard

Tissues

Contact Hours:

Theory = 32

Practical = 48

Total = 80

Credit Hours:

Theory = 02

Practical = 01

Total = 03

Course Objective:

- a) Explain the structural aspects of dental hard tissues such as teeth, enamel, dentin, cementum & bone
- b) Able to describe the chemical and physical properties of each of the above
- c) Able to explain the development, structure and function of each of the above
- d) Able to explain the common malformations and clinical correlations associated with each of the above

Learning Outcome:

The student will be able to demonstrate adequate basic knowledge along with the clinical correlations related to structure, development and histology of Dental Hard Tissues

Course Outline:

Early Tooth Development

- a) Primary Epithelial Band
- b) Dental Lamina and its fate
- c) Vestibular Lamina
- d) Tooth developmental Stages and their histology
 - i. Initiation
 - ii. Bud stage
 - iii. Cap stage
 - iv. Outer and inner enamel epithelium
 - v. Stellate reticulum
 - vi. Dental papilla
 - vii. Dental sac (dental follicle)
 - viii. Bell stage

- ix. Inner enamel epithelium
- x. Stratum intermedium
- xi. Stellate reticulum
- xii. Outer enamel epithelium
- xiii. Dental papilla
- xiv. Advanced/late bell stage
- xv. Hertwig's epithelial root sheath
- xvi. Root formation
- e) Histophysiology
 - i. Initiation
 - ii. Proliferation
 - iii. Histodifferentiation
 - iv. Morpho differentiation
 - v. Apposition
- f) Molecular mechanisms of tooth shape and tooth type determination (patterning and morphogenesis)
- g) Tooth initiation potential
- h) Establishment of oral-aboral axis
- i) Control of tooth germ position
- j) Mechanism of control of tooth number
- k) Functional redundancy and their complexities
- l) Regulation of ectodermal boundaries
- n) Enamel knot—Signaling center for tooth Morphogenesis
- o) Breakup of the dental lamina and crown pattern determination
- p) Nerve and vascular supply during early development, vascular supply and nerve supply
- q) Formation of permanent dentition
- r) Tissue engineering and Regeneration of tooth and dental stem cells
- n) Clinical consideration (anomalies related to tooth number, size, shape)

Bone---Development/structure/histology

- a) Classification of Bones
- b) Gross morphology of bone
- c) Composition of Bone
 - i. Chemical composition of bone
 - ii. Organic matrix
- d) Histology of bone
 - i. Osteoid
 - ii. Bone organization
- e) Bone Cells types
 - i. Osteoblasts
 - ii. Osteocytes
 - iii. Osteoclasts
 - iv. Bone lining cells
 - v. Osteoprogenitor cells
 - vi.
- f) Regulation of bone cell formation
 - i. Formation of osteoblasts

- ii. Formation of osteoclast
- g) Bone Development
 - i. Intramembranous formation
 - ii. Differences between immature bone and mature bone
 - iii. endochondral bone formation
- h) Sutural bone growth
- i) Bone Resorption
- j) Bone Remodeling
- k) Alveolar Bone
 - i. Development of Alveolar Process
 - ii. Structure of the Alveolar Bone
 - iii. Internal Reconstruction of Alveolar Bone
- l) Age Changes
- m) Clinical Considerations and Therapeutic Considerations

Enamel--- Development/ Histology/Structure

- a) Development
 - i. Epithelial enamel organ
 - ii. Outer enamel epithelium
 - iii. Stellate reticulum
 - iv. Stratum intermedium
 - v. Inner enamel epithelium
 - vi. Cervical loop
- b) Histology
 - i. Physical and chemical Characteristics of Enamel
- c) Amelogenesis
 - i. Light Microscopy of Amelogenesis
 - ii. Electron Microscopy of Amelogenesis/ life cycle of the ameloblasts
 - iii. Development of Tomes process
- d) Ameloblast Secretory Products / enamel proteins
- e) Formation of enamel matrix, Mineralization and maturation of the enamel matrix
- f) Incremental line formation
- g) Molecular elements of ameloblast differentiation (gene transcription, membrane receptors, intracellular receptors)
- h) Regulation of pH During Enamel Formation
- i) Structural and Organizational Features of Enamel
 - i. Rods
 - ii. Structure and direction of striations, rod Interrelationships
 - iii. Striae of Retzius
 - iv. Cross striations
 - v. Enamel cuticle
 - vi. Bands of Hunter and Schreger
 - vii. Gnarled Enamel
 - viii. Enamel Tufts and Lamellae
 - ix. Dentinoenamel Junction and
 - x. Odontoblast process and Enamel Spindles
 - xi. Enamel Surface

- j) Age Changes
- k) Defects of Amelogenesis
- l) Clinical Implications
 - i. Fluoridation
 - ii. Acid Etching
 - iii. Enamel pearls

Dentine--Development/Histology/Structure

- a) Basic Structure of Dentin
- b) Composition, Formation, and Structure of Dentin
- c) Types of Dentin
 - i. Primary Dentin
 - ii. Secondary Dentin
 - iii. Tertiary Dentin
- d) Pattern of Dentin Formation
- e) Dentinogenesis
 - i. Odontoblast Differentiation
 - ii. Formation of Mantle Dentin
 - iii. Vascular Supply
 - iv. Control of Mineralization
 - v. Pattern of Mineralization
 - vi. Formation of Root Dentin
 - vii. Secondary and Tertiary Dentinogenesis
- f) Histology of Dentin
 - i. Dentinal Tubules
 - ii. Peritubular Dentin
 - iii. Sclerotic Dentin
 - iv. Intertubular Dentin
 - v. Interglobular Dentin
 - vi. Incremental Growth Lines
 - vii. Granular Layer of Tomes
- g) Pre-dentin
- h) Odontoblast process
- i) Innervation of Dentin
- j) Intratubular nerves
- k) Dentin Sensitivity and theories of pain transmission through dentin
- l) Permeability of Dentin
- m) Age and Functional Changes
- n) Vitality of dentin
- o) Reparative dentin
- p) Dead tracts
- q) Clinical Considerations

Practicals:

Histological slides and drawings of dental hard tissues

Recommended Books:

Oral Anatomy Histology & Embryology-Berkovitz

Ten Cate Oral Histology, Development, Structure and Function

Essentials of Oral Histology and Embryology-Cheigo

Illustrated Dental Embryology, Histology and Anatomy-Bath Balogh & Fehrenbach

Anatomy for Dental Students

Mineralized Tissues in Oral and Craniofacial

Dental Biochemistry

Basic sciences for dental students

Course Title: OB703 Structure, Development and Histology of Dental Soft and Supporting Tissues

Contact Hours:

Theory = 32

Practical = 48

Total = 80

Credit Hours:

Theory = 02

Practical = 01

Total = 03

Course Objective:

- a) Explain the development, structure and histological features of the dental soft and supporting tissues
- b) Explain the molecular basis of the structural formation of the above
- c) Describe the clinical correlations associated with the dental soft and supporting tissues

Learning Outcome:

The student will be able to demonstrate adequate basic knowledge along with the clinical correlations related to structure, development and histology of Dental Soft Tissues

Course Outline:

Pulp---Development/Histology/Structure

- a) Anatomy
- b) General features
- c) Coronal pulp
- d) Radicular pulp
- e) Apical foramen
- f) Accessory canals
- g) Structural Features
 - i. Intercellular substance
 - ii. Fibroblasts
 - iii. Fibers
 - iv. Non fibrous matrix (Glycosaminoglycans, proteoglycans and glycoproteins
 - v. Undifferentiated mesenchymal cells
 - vi. Odontoblasts of pulp
 - vii. Defense cells
 - viii. Pulpal stem cells
 - ix. Blood vessels
 - x. Lymph vessels
 - xi. Nerves
 - xii. Nerve fiber types
 - xiii. Nerve endings
- h) Molecular events following pulp injury and repair
- i) Functions
 - i. Inductive
 - ii. Formative
 - iii. Nutritive
 - iv. Protective
 - v. Defensive or reparative
- j) Primary pulp
- k) Permanent pulp
- l) Dental pulp stem cells
- m) Regressive Changes (Aging)
 - i. Cell changes
 - ii. Fibrosis
 - iii. Vascular changes
 - iv. Pulp stones (denticles)
 - v. Diffuse calcifications
- n) Development
- o) Clinical Considerations
- p) Vasculature and Lymphatic Supply
- q) Innervation of pulp
- r) Response to Environmental Stimuli

Cementum---Development/ structure/ function

- a) Physical Characteristics
- b) Chemical Composition
- c) Cementogenesis
- d) Cementoblasts
- e) Cementoid tissue
- f) Structure
 - i. Acellular extrinsic fiber cementum
 - ii. Cellular cementum
 - iii. Cellular intrinsic fiber cementum (CIFC)
 - iv. Cellular mixed fiber cementum (CMFC)
 - v. Cellular mixed stratified cementum (CMSC)
 - vi. Differences between cementocytes and osteocytes
 - vii. Differences between AEFC and cellular intrinsic fiber cementum (CIFC)
- g) Cemento-dentinal Junction
- h) Cemento-enamel Junction
- i) Functions
 - i. Anchorage
 - ii. Adaptation
 - iii. Repair
- j) Clinical Considerations
 - i. Hypophosphatasia
 - ii. Hyper cementosis

Periodontal ligament--- Development/structure/functions

- a) Development
- b) Development of the principal fibers
- c) Development of cells
- d) Periodontal ligament collagen fiber attachment to the root surface
- e) Periodontal Ligament Homeostasis
- f) Cell Biology of Normal Periodontium
- g) Cells
 - i. Synthetic cells
 - ii. Osteoblasts
 - iii. Fibroblast
 - iv. Fibroblast-matrix adhesion and traction
 - v. Functions
 - vi. Differences between periodontal ligament fibroblasts and gingival fibroblasts
 - vii. Cementoblasts
 - viii. Resorptive cells
 - ix. Osteoclasts
 - x. Fibroblasts
 - xi. Intracellular degradation
 - xii. Cementoclasts
 - xiii. Progenitor cells
 - xiv. Origin of the periodontal stem cells

- xv. Relationship between cells
- xvi. Epithelial rests of Malassez
- xvii. Defense cells
- xviii. Mast cells
- xix. Macrophages
- xx. Eosinophils 188
- k) Extracellular Substance
 - i. Fibers
 - ii. Collagen
 - iii. Oxytalan
 - iv. Sharpey's fibers
 - v. Intermediate plexus
 - vi. Elastic fibers
 - vii. Reticular fibers
 - viii. Secondary fibers
 - ix. Indifferent fiber plexus
 - x. Ground substance
 - xi. Interstitial tissue
- l) Structures Present in Connective Tissue
 - i. Blood vessels
 - ii. Lymphatic drainage
 - iii. Nerves
 - iv. Cementicles
- m) Functions
 - i. Supportive
 - ii. Sensory
 - iii. Nutritive
 - iv. Homeostatic
 - v. Eruptive
 - vi. Physical
- n) Age Changes in Periodontal Ligament
- o) Unique Features of Periodontal Ligament
- p) Clinical Considerations

Practicals:

Histological slides and drawings related to the Dental supporting tissues

Recommended Books:

Oral Anatomy Histology & Embryology-Berkovitz

Ten Cate Oral Histology, Development, Structure and Function

Essentials of Oral Histology and Embryology-Cheigo

Illustrated Dental Embryology, Histology and Anatomy-Bath Balogh & Fehrenbach

Anatomy for Dental Students

Mineralized Tissues in Oral and Craniofacial

Dental Biochemistry

Basic sciences for dental students

Course Title: OB704 Mechanism of Growth, Eruption & Shedding in the

Oral Cavity

Contact Hours:

Theory = 08

Practical =24

Total = 32

Credit Hours:

Theory = 0.5

Practical =0.5

Total = 01

Course Objective:

- a) Explain the developmental and molecular mechanisms of eruption and shedding of the teeth
- b) Describe the clinical correlations associated with eruption and shedding

Learning Outcome:

The student will be able to demonstrate the mechanism of eruption and shedding with relevance to the clinical situations

Course Outline:

Physiological tooth movements, eruption and shedding

- a) Pre eruptive Tooth Movement
- b) Eruptive Tooth Movements
- c) Histology of tooth movements
 - i. Pre-eruptive phase
 - ii. Eruptive phase
 - iii. Post-eruptive phase
- d) Mechanisms of Eruptive Tooth Movement
- e) Theories of tooth eruption
 - i. Bone remodeling theory
 - ii. Root formation theory
 - iii. Vascular pressure theory

- iv. Periodontal ligament traction theory
- f) Accommodation for Growth
- g) Compensation for Occlusal Wear
- h) Accommodation for Interproximal wear
- i) Posteruptive tooth movement
- j) Cellular and molecular events in eruption
- k) Clinical Considerations
- l) Shedding of Teeth
- m) Pattern of shedding
- n) Histology of Shedding
- o) Mechanism of Resorption and Shedding
- p) Remnants of deciduous teeth
- q) Retained deciduous teeth
- r) Submerged deciduous teeth
- s) Odontoclast
- t) Pressure
- u) Abnormal Tooth Movement
- v) Orthodontic Tooth Movement

Practicals: N/A

Recommended Books:

Oral Anatomy Histology & Embryology-Berkovitz

Ten Cate Oral Histology, Development, Structure and Function

Essentials of Oral Histology and Embryology-Cheigo

Illustrated Dental Embryology, Histology and Anatomy-Bath Balogh & Fehrenbach

Anatomy for Dental Students

Mineralized Tissues in Oral and Craniofacial

Dental Biochemistry

Basic sciences for dental students

Course Title: OB705 Oral Physiology & Dental Biochemistry

Contact Hours:

Theory = 16

Practical = 00

Total = 16

Credit Hours:

Theory = 01

Practical = 00

Total = 01

Course Objective:

- a) Explain the physiological mechanism associated with the oral processes
- b) Describe the neuro-physiological pathway of the oral processes
- c) Explain the clinical correlation associated with the physiological process
- d) Describe the biochemical basis of structures associated with the oral cavity

Learning Outcome:

Students will be able to demonstrate the basic knowledge of oral processes and the effects of malfunctions on oral cavity

Course Outline:

ORAL PHYSIOLOGY

- a. Physiology of dental pain transmission through the oral cavity
- b. Mechano-reception in oral cavity
- c. Physiology and biochemistry of saliva, mechanism of saliva formation, secretion and flow
- d. Thermo-reception in oral cavity
- e. Physiology and mechanism of swallowing
- f. Physiology and mechanism of speech
- g. Physiology of vocal cord apparatus
- h. Physiology of and mechanism of mastication
- i. Physiology and mechanism of taste transduction
- j. Physiology of olfaction
- k. Types of jaw reflexes
 - i. Jaw opening reflex
 - ii. Jaw closing reflex
 - iii. Unloading reflex
- l. Types of salivary reflexes
- m. Role and effects of hormones, vitamins and micro-nutrients on oral health and tissues
 - i. Effects of sex hormones on periodontal health in puberty, menstruation, pregnancy, menopause and post menopause states

- ii. Effects on vitamins and micronutrients on oral and periodontal health
- n. Mechanism of calcium homeostasis and calcitropic hormones in the body
 - i. Calcium regulation in the body
 - ii. Phosphate regulation in the body
 - iii. Role of Parathyroid hormone in maintaining calcium homeostasis
 - iv. Role of calcitonin and Vitamin D in regulating calcium hemostasis
- o. Stephan's curve and Plaque Biochemistry
 - i. Definitions of Pellicle, plaque, calculus
 - ii. Mechanism of Plaque formation and Climax Community
 - iii. Mechanism of calculus formation
 - iv. Stephan's curve
- p. Physiology of stress and anxiety and its effects on oral cavity
 - i. The neural axes of stress response
 - ii. The neuro-endocrine axes of stress response
 - iii. The endocrine axes of stress response
- q. Physiology of oral wound healing
 - i. Phases of wound healing in the oral tissues
 - ii. Cells involved in wound healing
 - iii. Factors affecting wound healing
- r. Physiology of repair of oral tissues
 - i. Repair after tooth extraction
 - ii. Repair of periodontium

Cytoskeleton, cell junction and fibroblasts

- a) Cytoskeleton
- b) Intercellular Junctions
- c) Epithelium–Connective Tissue Interface
- d) Fibroblasts
 - i. Cellular Organization
 - ii. Contraction and Motility
 - iii. Junctions
 - iv. Heterogeneity
 - v. Aging
- e) Secretory Products of Fibroblasts
 - i. Collagens
 - ii. Collagen Synthesis and Assembly
 - iii. Elastin
 - iv. Proteoglycans
 - v. Glycoproteins
 - vi. Growth Factors and Cytokines
 - vii. Extracellular Matrix Degradation

Practicals: N/A

Recommended Books:

Oral Anatomy Histology & Embryology-Berkovitz

Ten Cate Oral Histology, Development, Structure and Function

Essentials of Oral Histology and Embryology-Cheigo

Illustrated Dental Embryology, Histology and Anatomy-Bath Balogh & Fehrenbach

Anatomy for Dental Students

Mineralized Tissues in Oral and Craniofacial

Dental Biochemistry

Basic sciences for dental students

Course Title: OB706 Tooth Morphology & Occlusion

Contact Hours:

Theory = 32

Practical = 48

Total = 80

Credit Hours:

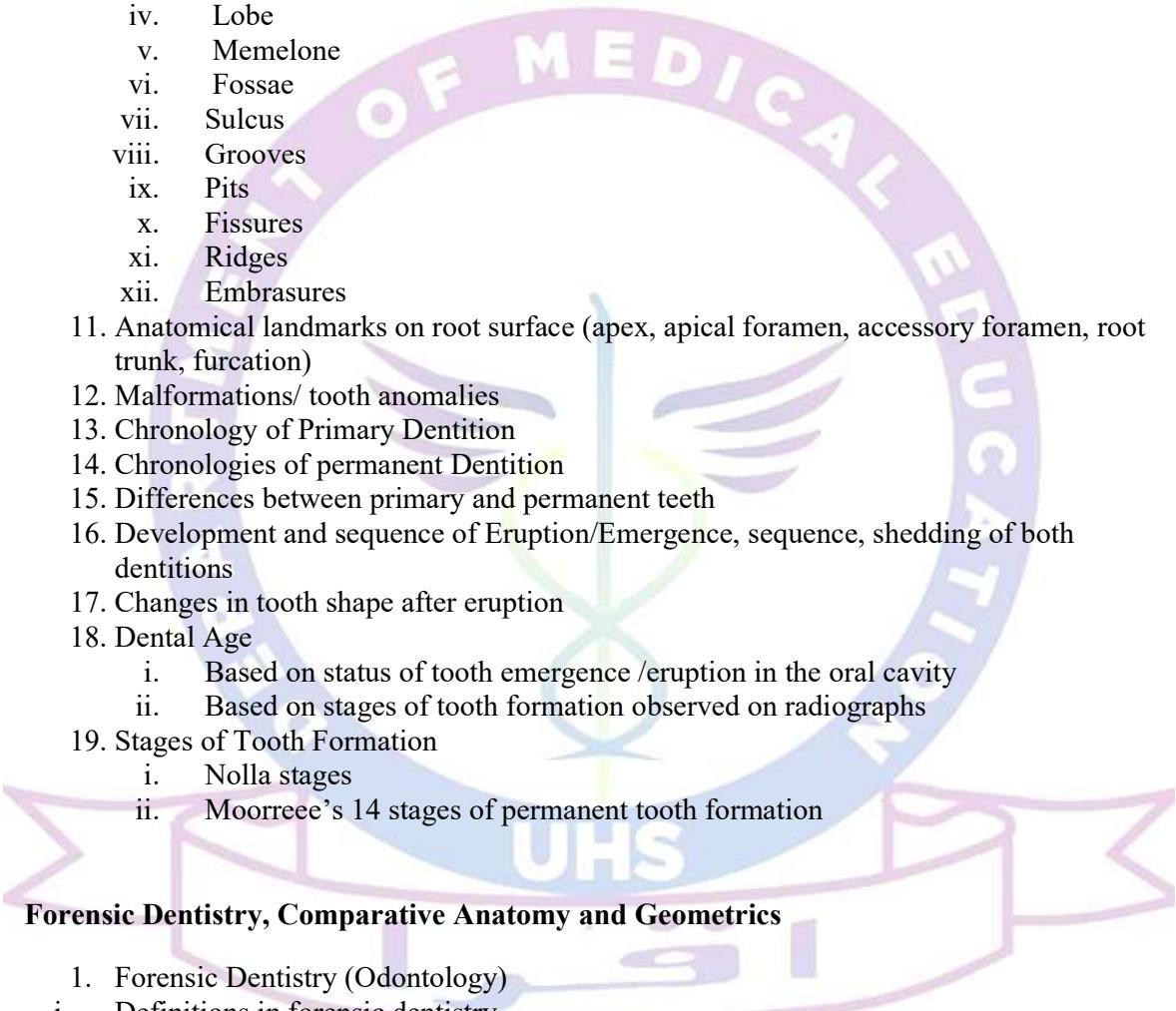
Theory = 02

Practical = 01

Total = 03

Course Objective:

- a) Describe the morphological features and forms of all deciduous and permanent tooth
- b) Explain the occlusal aspects of both dentitions


Learning Outcome:

Students will be able to identify the individual teeth clinically and on tooth models by having basic knowledge of morphological features of the dentition. Also they will be able to identify numerous variations in tooth morphology

Course Outline:

General Aspects of Tooth Morphology:

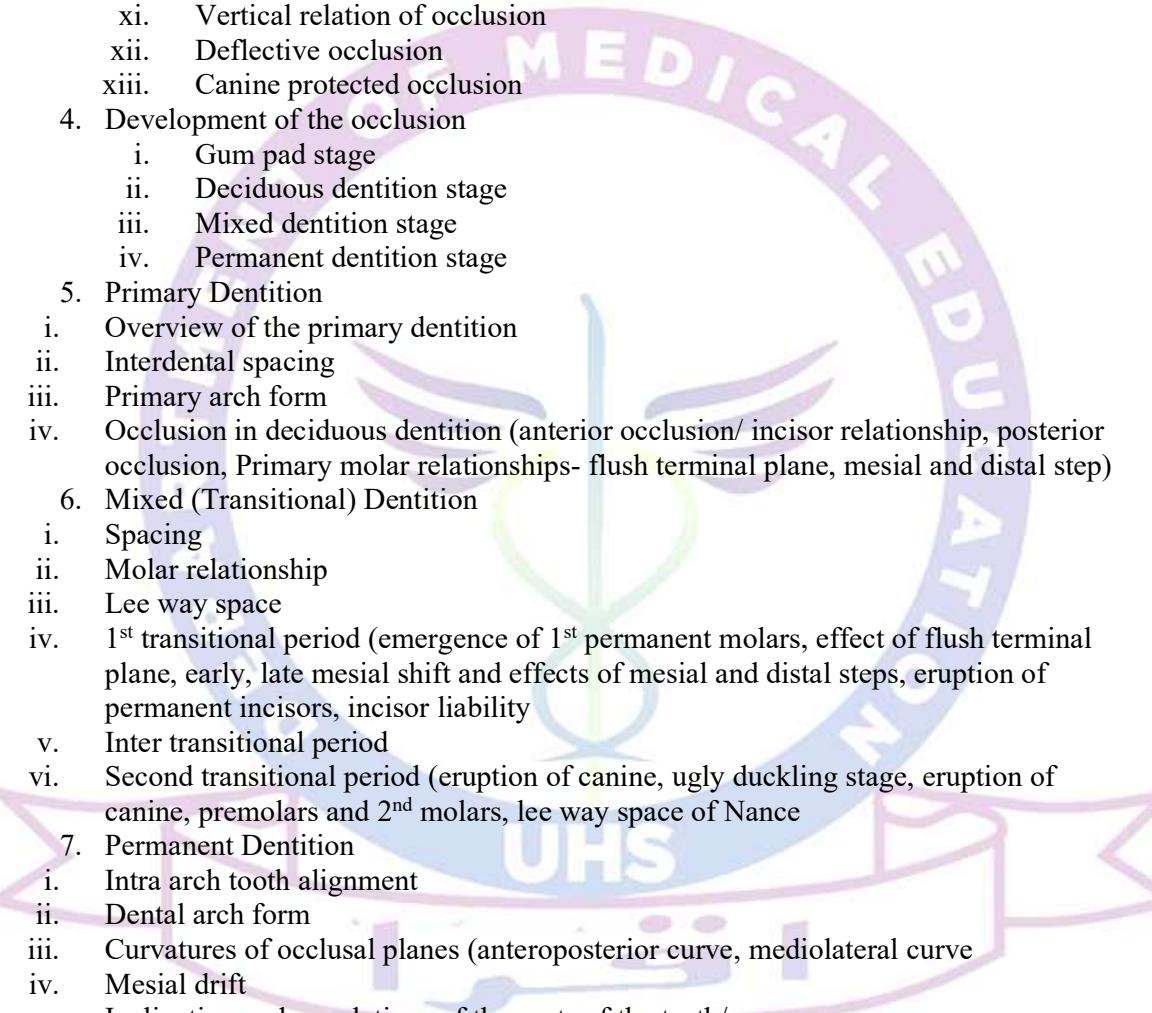
1. Types of human dentition
2. Arrangement in dental arches
 - i. Classes of teeth
 - ii. Types of teeth
3. Trait categories of teeth

4. Nomenclature of teeth
5. Dental formulae in humans
6. Tooth Numbering Systems
7. Surfaces of the teeth
8. Divisions of crowns and roots into thirds
9. Line angles and point angles
10. Anatomical land marks on tooth surface
 - i. Cusps
 - ii. Tubercl
 - iii. Cingulum
 - iv. Lobe
 - v. Memelone
 - vi. Fossae
 - vii. Sulcus
 - viii. Grooves
 - ix. Pits
 - x. Fissures
 - xi. Ridges
 - xii. Embrasures
11. Anatomical landmarks on root surface (apex, apical foramen, accessory foramen, root trunk, furcation)
12. Malformations/ tooth anomalies
13. Chronology of Primary Dentition
14. Chronologies of permanent Dentition
15. Differences between primary and permanent teeth
16. Development and sequence of Eruption/Emergence, sequence, shedding of both dentitions
17. Changes in tooth shape after eruption
18. Dental Age
 - i. Based on status of tooth emergence /eruption in the oral cavity
 - ii. Based on stages of tooth formation observed on radiographs
19. Stages of Tooth Formation
 - i. Nolla stages
 - ii. Moorreee's 14 stages of permanent tooth formation

Forensic Dentistry, Comparative Anatomy and Geometrics

1. Forensic Dentistry (Odontology)
 - i. Definitions in forensic dentistry
 - ii. Civil litigation and dentistry
 - iii. Identification of human remains
 - iv. Dental DNA
 - v. Bite Marks
 - vi. Role of forensic dentist in mass disaster
 - vii. Importance to practicing dentists
2. Evolution of teeth
 - i. General aspects of evolution of teeth
 - ii. Important changes in course of evolution of teeth
 - iii. Increase in tooth complexity favored by evolution

3. Comparative Dental Anatomy
 - i. General aspects of Fish, amphibian and reptile dentition
 - ii. Modern mammals (rodents, herbivorous, carnivorous)
4. Dental Anthropology
 - i. Categories of teeth by shape
 - ii. Categories of teeth by generation
 - iii. Metric and non-metric variations in teeth
 - iv. Sexual dimorphism of teeth
5. Tooth forms and jaw movements
6. General facial and lingual aspects of all teeth
7. Summary of Schematic Outlines
8. Form and Function of the Permanent Dentition,


Orofacial Complex: Form and Function

1. General aspects of Form and Function
2. Form Follows Function (Tooth forms and jaw movements)
3. Interproximal spaces and protection of interdental gingival
4. Proximal contact areas
 - i. Significance of contact areas
 - ii. Position of contact areas
 - iii. Contact area location as viewed facially
 - iv. Location of proximal contacts as viewed occlusally
 - v. Interproximal spaces
5. Embrasures (types, forms, functions)
6. Facial and lingual physiological contours of teeth (anterior teeth , posterior teeth)
7. Curvatures of cervical lines on mesial and distal surfaces
8. Imaginary occlusal planes and curves
9. Contact Areas and Incisal and Occlusal Embrasures from the Labial and Buccal Aspect,
10. Contact Areas and Labial, Buccal, and Lingual Embrasures from the Incisal and Occlusal Aspects,
11. Facial and Lingual Contours at the Cervical Thirds (Cervical Ridges) and Lingual Contours at the Middle Thirds of Crowns,
12. The Height of Epithelial Attachment: Curvatures of the Cervical Lines (Cementoenamel Junction [CEJ]) mesially and Distally

Occlusion, Morphology of Deciduous Dentition and Pulp chambers

Occlusion

1. Arch form, arch length, arch width
2. Characteristics of occlusion in permanent dentition
 - i. Overlap of anterior teeth
 - ii. Intra arch tooth contact
 - iii. Angulations
 - iv. Arch curvatures
 - v. Incisor relationships
 - vi. Molar relationship
3. Types of occlusions

- i. Ideal occlusion
- ii. Normal occlusion
- iii. Physiological occlusion
- iv. Functional occlusion
- v. Balanced occlusion
- vi. Uni and bilateral occlusion
- vii. Therapeutic occlusion
- viii. Traumatic occlusion
- ix. Centric occlusion
- x. Centric relation
- xi. Vertical relation of occlusion
- xii. Deflective occlusion
- xiii. Canine protected occlusion

4. Development of the occlusion
 - i. Gum pad stage
 - ii. Deciduous dentition stage
 - iii. Mixed dentition stage
 - iv. Permanent dentition stage
5. Primary Dentition
 - i. Overview of the primary dentition
 - ii. Interdental spacing
 - iii. Primary arch form
 - iv. Occlusion in deciduous dentition (anterior occlusion/ incisor relationship, posterior occlusion, Primary molar relationships- flush terminal plane, mesial and distal step)
6. Mixed (Transitional) Dentition
 - i. Spacing
 - ii. Molar relationship
 - iii. Lee way space
 - iv. 1st transitional period (emergence of 1st permanent molars, effect of flush terminal plane, early, late mesial shift and effects of mesial and distal steps, eruption of permanent incisors, incisor liability)
 - v. Inter transitional period
 - vi. Second transitional period (eruption of canine, ugly duckling stage, eruption of canine, premolars and 2nd molars, lee way space of Nance)
7. Permanent Dentition
 - i. Intra arch tooth alignment
 - ii. Dental arch form
 - iii. Curvatures of occlusal planes (anteroposterior curve, mediolateral curve)
 - iv. Mesial drift
 - v. Inclination and angulations of the roots of the teeth/
 - vi. Orientation of long axis of the tooth
 - vii. Forms of occluding surfaces of the teeth
 - viii. Functional forms of teeth at incisal and occlusal thirds
8. Occlusal relationships of upper and lower teeth
 - i. Supporting or centric cusps
 - ii. guiding or non-supporting cusps
 - iii. centric stops (Concept of 138 points of occlusal contact)
 - iv. buccolingual occlusal contacts
 - v. mesiodistal occlusal contacts
9. Occlusal contacts of posterior teeth

10. Occlusal contacts during centric and eccentric positions of mandible
 - i. Centric occlusal contacts (anterior & posterior)
 - ii. Centric relation contacts
 - iii. Cusp-fossa occlusion
 - iv. Cusp-embrasure relationship
 - v. Working contacts
 - vi. Non-working contacts
 - vii. Protrusive contacts
11. Biomechanics of Chewing Function
12. Determinants of occlusal morphology
13. Tooth guidance (canine guidance, group functions, incisal guidance, condylar guidance)
14. Obtaining centric relation
15. Protrusive, retrusive and lateral movements
16. Angle 's classification
 - i. Angle's classification of Malocclusion
 - ii. Incisor classification (based on incisor relationship)
 - iii. Canine classification (based on canine relationship)
17. Neurobehavioral Aspects of Occlusion
 - i. Determinants of occlusal morphology
 - ii. Occlusal stability
 - iii. Guidance of occlusion
 - iv. Adaptation
 - v. Occlusal interferences
 - vi. Vertical dimensions
18. Clinical considerations
 - i. Malocclusion
 - ii. Parafunctional habits
 - iii. Occlusal trauma

Deciduous & Permanent Dentition

1. Importance of Primary Teeth
2. Life cycle of deciduous dentition
3. Differences between deciduous and permanent dentition
4. Morphology of labial, lingual, mesial, distal & incisal/occlusal aspects of anterior and posterior deciduous dentition
5. Morphology of labial, lingual, mesial, distal & incisal/occlusal aspects of anterior and posterior Permanent dentition

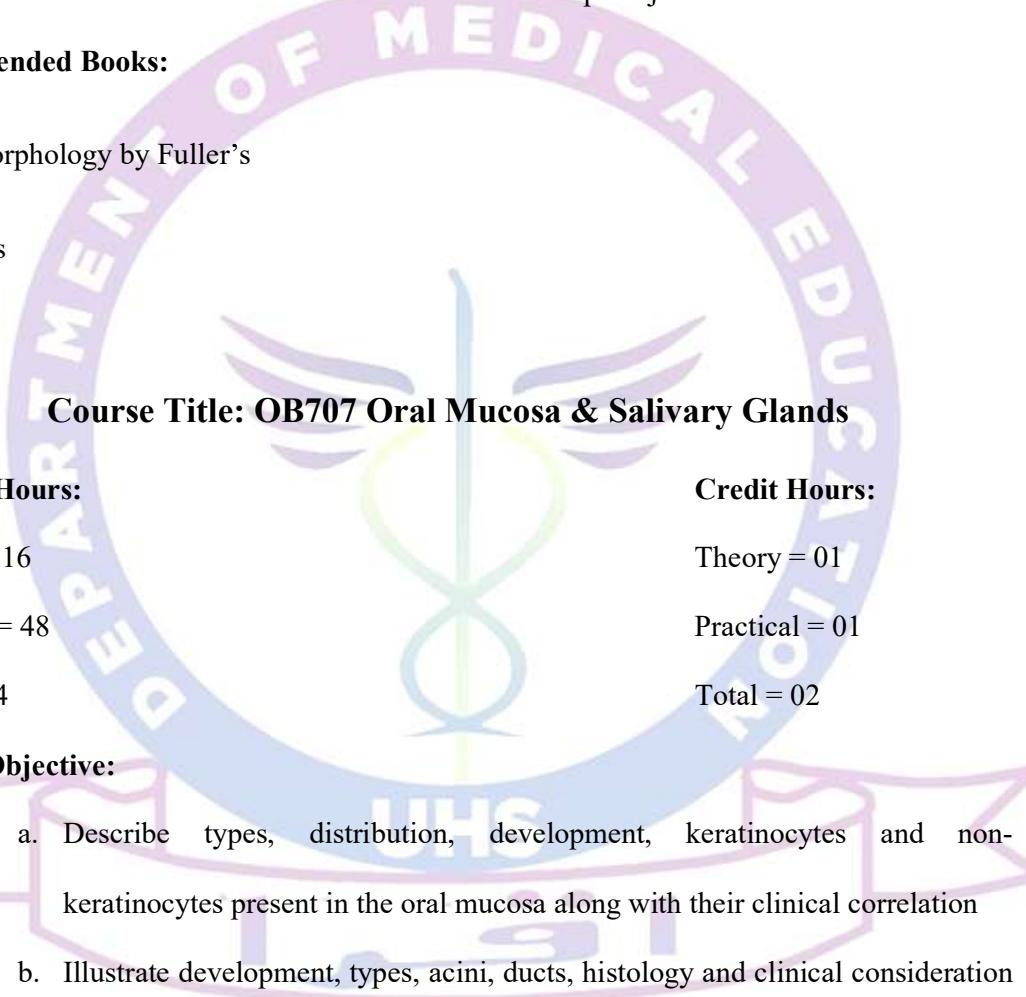
Pulp Morphology

1. Pulp cavity
2. Pulp chamber
3. Root canals
4. Classification of root canals (Weine's Classification)
5. Pulp anatomy of permanent maxillary teeth (incisors, canine, premolars, molars)
 - i. Pulp chamber
 - ii. Root canal
 - iii. Cross section
 - iv. Access opening
6. Pulp anatomy of permanent mandibular teeth (incisors, canine, premolars, molars)

- ii. Pulp chamber
- iii. Root canal
- iv. Cross section
- v. Access opening

7. Clinical considerations

- i. Role of radiographs of pulp chambers and canals
- ii. Crown and root fractures


Practicals:

Demonstration on individual tooth models and on the complete jaw models

Recommended Books:

Tooth Morphology by Fuller's

Wheeler's

Contact Hours:

Theory = 16

Practical = 48

Total = 64

Credit Hours:

Theory = 01

Practical = 01

Total = 02

Course Objective:

- a. Describe types, distribution, development, keratinocytes and non-keratinocytes present in the oral mucosa along with their clinical correlation
- b. Illustrate development, types, acini, ducts, histology and clinical consideration of the salivary glands

Learning Outcome:

The students will be able to demonstrate basic knowledge of oral mucosa and salivary glands along with the effects of disorders on both of these structures

Course Outline:

Salivary glands-development, structure & function

- a) Functions of Saliva
 - i. Protection
 - ii. Buffering
 - iii. Pellicle Formation
 - iv. Maintenance of Tooth
 - v. Integrity
 - vi. Antimicrobial Action
 - vii. Tissue Repair
 - viii. Digestion
 - ix. Taste perception
 - x. Mastication and deglutition
 - xi. Speech
 - i. Excretion
- b) Composition of saliva
- c) Anatomy of salivary glands
 - ii. Parotid gland
- d) Development of salivary glands and its molecular regulation
- e) Structure of salivary glands
 - i. Secretory Cells (serous, mucous)
 - ii. Formation, composition, control and secretion of Saliva
 - iii. Myoepithelial Cells
 - iv. Ducts
 - v. Ductal Modification of Saliva
 - vi. Connective Tissue
 - vii. Basal cells and lymph nodes
 - viii. Nerve Supply
 - ix. Blood Supply
- f) Classification and histology of the Major Salivary Glands
 - i. Parotid Gland
 - ii. Submandibular Gland
 - iii. Sublingual Gland
- g) Histology of the Minor Salivary Glands
 - i. Labial and buccal glands
 - ii. Glossopalatine glands
 - iii. Palatine glands
 - iv. Lingual glands
 - v. Von Ebner's glands
- h) Clinical Considerations
 - i. Age Changes
 - ii. Diseases
 - iii. Dry Mouth (Xerostomia)
 - iv. Sialo microliths
 - v. Oncocytes
 - vi. Staphne's cavity (cyst)
 - vii. Mucocele & ranulas
 - viii. Sialoliths

- ix. Natural sequence of events of chronic sialoliths and sialolithiasis
- x. Tissue engineering and salivary gland regeneration

Oral Mucosa---Development/structure/function

- a) Classification of Oral Mucosa
- b) Functions of Oral Mucosa
 - i. Defense
 - ii. Lubrication
 - iii. Sensory
 - iv. Protection
- c) Comparison of oral mucosa with skin and intestinal mucosa
- d) Basement membrane
- e) Lamina propria
- f) Submucosa
- g) Structure of the Oral Epithelium
 - i. Cytokeratin
 - ii. Keratinized epithelium
 - iii. Stratum Basale
 - iv. Stratum spinosum
 - v. Stratum granulosum
 - vi. Stratum corneum
- h) Keratinocytes and nonkeratinocytes
 - i. Keratinocytes
 - ii. Nonkeratinocytes
 - iii. Melanocytes
 - iv. Langerhans cell
 - v. Merkel cells
 - vi. Non-keratinized epithelium
- i) Subdivisions of Oral Mucosa (keratinized and non-keratinized areas)
 - i. Masticatory mucosa (gingiva and hard palate)
 - ii. Hard palate
 - iii. Gingiva
 - iv. Blood and nerve supply
 - v. Vermilion zone
 - vi. Lining mucosa
 - vii. Lip and cheek
 - viii. Vestibular fornx and alveolar mucosa
 - ix. Inferior surface of tongue and floor of oral cavity
 - x. Soft palate
 - xi. Specialized mucosa
 - xii. Dorsal lingual mucosa
 - xiii. Taste buds
- j) Gingival sulcus and Dentogingival junction
 - i. Development of dentogingival junction
 - ii. Shift of dentogingival junction
 - iii. Sulcus and cuticles
 - iv. Epithelial attachment
 - v. Migration of epithelial attachment
- k) Development of Oral Mucosa
- l) Oral Epithelium
 - i. Epithelial Proliferation

- ii. Epithelial Maturation
- iii. Ultrastructure of the Epithelial Cell
- iv. Cellular Events in Maturation
- v. Permeability and Absorption
- m) Specialized Mucosa
 - i. Fungiform Papillae
 - ii. Filiform Papillae
 - iii. Foliate Papillae
 - iv. Circumvallate Papillae
- n) Junctions in the Oral Mucosa
 - i. Mucocutaneous Junction
 - ii. Mucogingival Junction
 - iii. Dentogingival Junction
- o) Age Changes in Oral Mucosa
- p) Clinical Considerations

Practicals:

Histological slides related to oral mucosa and salivary glands

Recommended Books:

Oral Anatomy Histology & Embryology-Berkovitz

Ten Cate Oral Histology, Development, Structure and Function

Essentials of Oral Histology and Embryology-Cheigo

Illustrated Dental Embryology, Histology and Anatomy-Bath Balogh & Fehrenbach

Anatomy for Dental Students

Mineralized Tissues in Oral and Craniofacial

Dental Biochemistry

Basic sciences for dental students

Course Title: OB708 Temporomandibular joint & Growth and development of facial profiles

Contact Hours:

Theory = 08

Practical = 24

Total = 32

Credit Hours:

Theory = 0.5

Practical = 0.5

Total = 01

Course Objective:

- a) Describe the gross anatomy of TMJ
- b) Explain the histology and clinical correlation associated with TMJ

Learning Outcome:

The students will be able to express adequate knowledge of TMJ along with the clinical relevance of its functions

Course Outline:

Temporomandibular joint

- a. Classification of Joints
 - i. Fibrous Joints
 - ii. Cartilaginous Joints
 - iii. Synovial Joints
- b. Type of the Joint
- c. Development of the Joint
- d. Bones of the Joint
- e. Cartilage Associated with the Joint
- f. Histology of the articular surfaces of the joint
- g. Capsule, Ligaments of the Joint
- h. Intra articular disk of the joint
 - i. Collagen fibers
 - ii. Elastin fibers
 - iii. Ground substance
 - iv. Cells of the disk
- i. Synovial Membrane
- j. Condyle of the child
- k. Primary vs secondary cartilages
- l. Muscle Contraction
- m. Motor Unit/ muscles involved in TMJ movements
- n. Muscle Spindle

- o. Golgi Tendon Organ
- p. Muscles of Mastication
- q. Biomechanics of the Joint/ mandibular positions and movements
- r. Innervation of the Joint
- s. Blood Supply to the Joint
- t. Clinical considerations

Facial growth and development

- a) Facial Types
- b) Facial Profiles
- c) Male and Female Faces
- d) Age Changes
- e) Basic Concepts of Facial Growth
- f) Size Increases and Remodeling
- g) Displacement Process
- h) Curve of Occlusion
- i) Mandibular Condyle and Growth

Practicals: N/A

Recommended Books:

Oral Anatomy Histology & Embryology-Berkovitz

Ten Cate Oral Histology, Development, Structure and Function

Essentials of Oral Histology and Embryology-Cheigo

Illustrated Dental Embryology, Histology and Anatomy-Bath Balogh & Fehrenbach

Anatomy for Dental Students

Mineralized Tissues in Oral and Craniofacial

Dental Biochemistry

Basic sciences for dental students

Course Title: OB709 Repair and regeneration of tooth and supporting tissues

Contact Hours:

Theory = 08

Practical = 24

Total = 32

Credit Hours:

Theory = 0.5

Practical = 0.5

Total = 01

Course Objective:

- a. Describe the physiology of wound healing
- b. Illustrate the mechanisms of healing in tooth and its supporting tissues

Learning Outcome:

The students will be able to produce repair mechanism in tooth tissues and can devise new perspectives for regeneration of oral cavity and teeth

Course Outline:

Repair and Regeneration of oral tissues

- a) Wound Healing in Oral Mucosa
 - i. Initial Response to Wounding:
 - ii. Hemostasis
 - iii. Inflammatory Cell Activation,
 - iv. Migration, and Function
 - v. Reparative Phase
 - vi. Wound Contraction and Scarring
- b) Wound Healing at the Dentogingival Junction
- c) Repair of Enamel
- d) Repair of the Dentin-Pulp Complex
- e) Dental Caries
- f) Cavity Preparation
- g) Repair Following Tooth Extraction
- h) Alterations to the Periodontal Connective Tissues with the Development of Periodontal Inflammation
- i) Repair of the Periodontium
- j) Mechanisms of Repair and Regeneration of Periodontal Connective Tissues
- k) Stem Cells
- l) New Perspectives

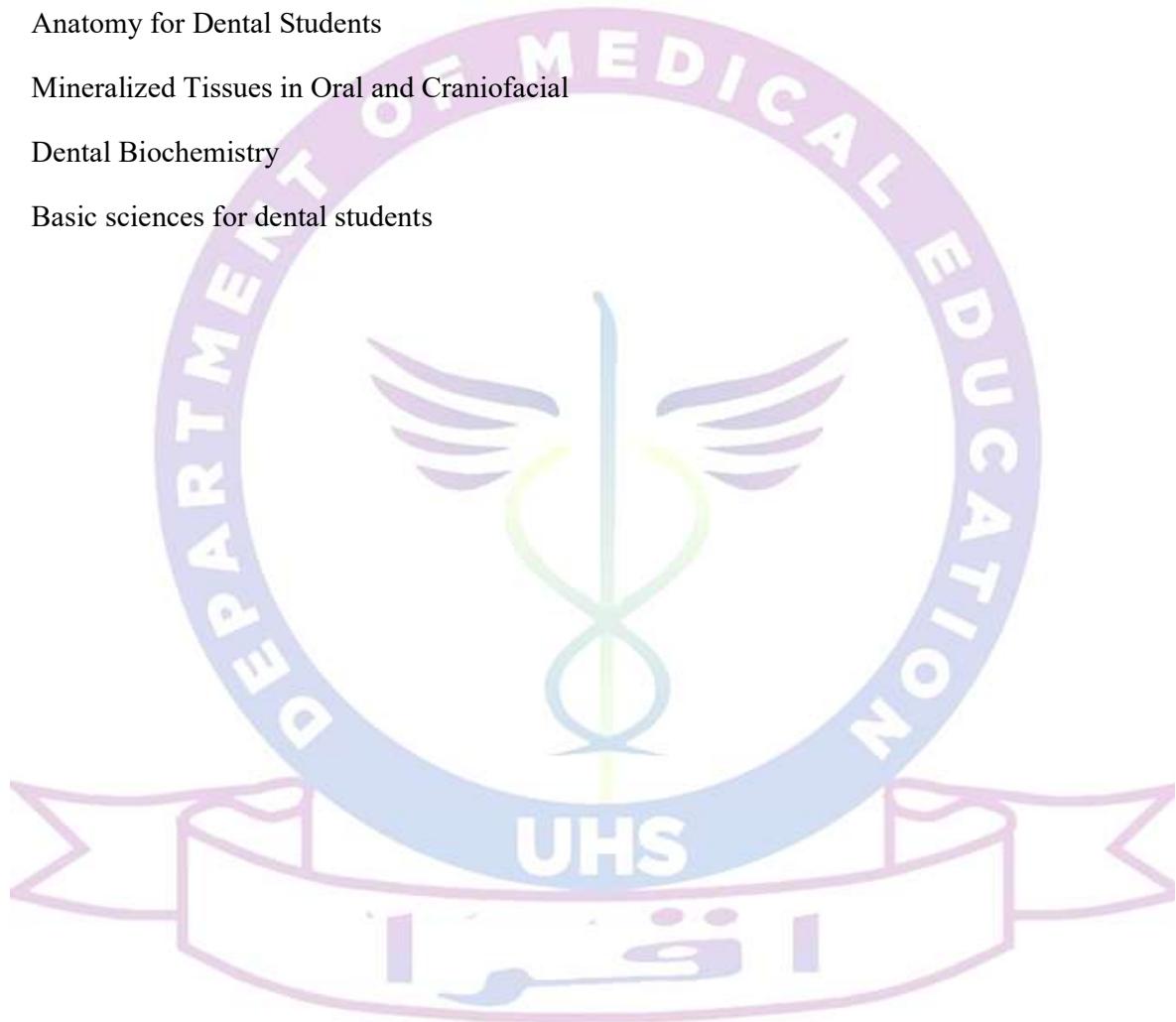
Practicals: N/A

Recommended Books:

Oral Anatomy Histology & Embryology-Berkovitz

Ten Cate Oral Histology, Development, Structure and Function

Essentials of Oral Histology and Embryology-Cheigo


Illustrated Dental Embryology, Histology and Anatomy-Bath Balogh & Fehrenbach

Anatomy for Dental Students

Mineralized Tissues in Oral and Craniofacial

Dental Biochemistry

Basic sciences for dental students

Course Title: Professional & Teaching Skills Apprenticeship (PTSA)

Credit Hours:02

Professional Skills Apprenticeship credit hours: 01

Teaching Skills Apprenticeship credit hours (CMT): 01

Professional & Teaching Skills
Apprenticeship

Professional Skills Apprenticeship:

Course Objective: To Prepare the students for Histological

and Molecular Biology techniques related to Oral Biology

Learning Outcome: Students will be able to learn the practical aspects of histological slide preparation, analysis and skills related to Molecular Biology

Practical Training:

- To learn the process of animal handling and anesthesia, animal sacrifice, preparation of tissue for histology, wax embedding, Image capturing through Microsoft
- Conduction of various histological and IHC techniques
- Conduction of molecular parameters including PCR, q-PCR, ELISA and Cell culture

Assessment: Formative assessment based on hands-on-training and one-to-one feedback

Final Project: As per approved synopsis

Tasks: Students will perform the above-mentioned procedures

Teaching Skills Apprenticeship

All students of M Phil programme will get registered for the CMT Certification in the final semester. Completing the course work and successfully getting certified for CMT, which is a patent of UHS, will be a compulsory integral component of PTSA (Professional and Teaching Skills Apprenticeship) for the 4th semester of all M Phil programs at UHS.

